Design a Hybrid Recommender System Solving Cold-start Problem Using Clustering and Chaotic PSO Algorithm
نویسندگان
چکیده مقاله:
One of the main challenges of increasing information in the new era, is to find information of interest in the mass of data. This important matter has been considered in the design of many sites that interact with users. Recommender systems have been considered to resolve this issue and have tried to help users to achieve their desired information; however, they face limitations. One of the most important challenges that they face is cold-start problem, which is raised when a new user/item entered into the system, while no previous information is available for it. The lack of previous knowledge of the new user/item, will causes the system fails generating its suggestions normally. In this paper, to solve the problem of cold-start user/item a new method is presented using combining content-based models and collaborative filtering. Moreover, demographic data is used to recommend the nearest items to cold-start users/items' interests. Compared to existing methods, the evaluation results show that the proposed method reduces the MAE and RMSE error.
منابع مشابه
An ontological hybrid recommender system for dealing with cold start problem
Recommender Systems ( ) are expected to suggest the accurate goods to the consumers. Cold start is the most important challenge for RSs. Recent hybrid s combine and . We introduce an ontological hybrid RS where the ontology has been employed in its part while improving the ontology structure by its part. In this paper, a new hybrid approach is proposed based on the combination of demog...
متن کاملA Hybrid Approach to Solve Cold Start Problem in Recommender Systems using Association Rules and Clustering Technique
Number of people who use internet and websites for various purposes is increasing at an astonishing rate. More and more people rely on online sites for purchasing songs, apparels, books, rented movies etc. The competition between the online sites forced the web site owners to provide personalized services to their customers. So the recommender systems came into existence. Recommender systems ar...
متن کاملOPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM
This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...
متن کاملTrustRank: a Cold-Start tolerant recommender system
The explosive growth of the World Wide Web leads to the fast advancing development of e-commerce techniques. Recommender systems, which use personalised information filtering techniques to generate a set of items suitable to a given user, have received considerable attention. Userand item-based algorithms are two popular techniques for the design of recommender systems. These two algorithms are...
متن کاملSolving Path Planning Problem by an ACO-PSO Hybrid Algorithm
An ACO-PSO Hybrid Algorithm Solving Path Planning Problem based on Swarm Intelligence (SI) is proposed. The problem first is described and some corresponding definitions are presented. Ant colony optimization (ACO) is used to establish the corresponding solution, and some material algorithm steps are set out. Particle swarm optimization (PSO) is applied to optimize the parameters in ACO, and pa...
متن کاملSolving the Cold Start Problem Using Product Related Contents
To make rating predictions, one of the most commonly used approach in recommender systems is the latent factor model. Despite its popularity, one of its drawbacks is that it only makes use of numeric ratings but ignores other resources, such as review texts. McAuley et al. [1] proposed a general framework to employ both numeric ratings and review texts, and showed their model can outperform the...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 7 شماره 1
صفحات 50- 61
تاریخ انتشار 2018-05
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023